If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-11=12
We move all terms to the left:
49x^2-11-(12)=0
We add all the numbers together, and all the variables
49x^2-23=0
a = 49; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·49·(-23)
Δ = 4508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4508}=\sqrt{196*23}=\sqrt{196}*\sqrt{23}=14\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{23}}{2*49}=\frac{0-14\sqrt{23}}{98} =-\frac{14\sqrt{23}}{98} =-\frac{\sqrt{23}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{23}}{2*49}=\frac{0+14\sqrt{23}}{98} =\frac{14\sqrt{23}}{98} =\frac{\sqrt{23}}{7} $
| (98.6-x)/1.4=6 | | -12(x+5)=4x+12 | | 7t-1=8t-8 | | X+.18x=36000 | | 2.6+4.2(2x)=2420 | | 4(3+x)-7(x-4)=0 | | -8x-9=-5(-12-3x) | | (-9+5i)/(3+i)=0 | | -4(2-x)=7(x+5) | | 3^x-2+3^x-3^x-1=87 | | 4(x+3)=5+8x | | 7(x-1)=11 | | 15y3-12y2+3y=0 | | 2y+5=-4y-8 | | 6x4-4x2=0 | | Y=-16t^2+8t+9 | | 4x+6)+74=180 | | 3x-2=-7x-5 | | 4x+6)+106=180 | | 11x+2=5x+10=58 | | 3/4n+1=-8 | | 3w+9=10 | | -2(2x-5)+6=4 | | 8.2p=41 | | 12+4/7h=-25 | | 8x+16=4x+5 | | 6x2x=80 | | -6(12p-7)=4(3-8p) | | 5(3t-9)=-2(24-6t) | | 9=1+j | | -7p-6+6p=2p+6 | | -1=1-11p |